Estimation of change point via Kalman-Bucy filter for linear systems driven by fractional Brownian motions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Change Point via Kalman-bucy Filter for Linear Systems Driven by Fractional Brownian Motions

We study the estimation of change point obtained through a Kalman-Bucy filter for linear systems driven by fractional Brownian motions.

متن کامل

Stochastic differential equations driven by fractional Brownian motions

2 Young’s integrals and stochastic differential equations driven by fractional Brownian motions 4 2.1 Young’s integral and basic estimates . . . . . . . . . . . . . . . . . . 4 2.2 Stochastic differential equations driven by a Hölder path . . . . . . . 7 2.3 Multidimensional extension . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Fractional calculus . . . . . . . . . . . . . . . . . . . ...

متن کامل

Fixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets

Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...

متن کامل

Title Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H > 1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Stochastic Analysis

سال: 2016

ISSN: 0973-9599

DOI: 10.31390/cosa.10.2.06